\( n! \) দ্বারা \( n \) এর ফ্যাক্টোরিয়াল বোঝানো হয়, যা গণিতের একটি বিশেষ অপারেশন। ফ্যাক্টোরিয়াল কোনো ধনাত্মক পূর্ণসংখ্যার উপর নির্ভরশীল এবং এর মান নির্ণয় করা হয় সেই সংখ্যাটির সাথে তার চেয়ে ছোট সব ধনাত্মক পূর্ণসংখ্যার গুণফল হিসাবে।
\( n \) এর ফ্যাক্টোরিয়াল, \( n! \) দিয়ে প্রকাশ করা হয় এবং এর মান নির্ণয় করা হয়:
\[
n! = n \times (n - 1) \times (n - 2) \times \ldots \times 3 \times 2 \times 1
\]
যেখানে \( n \) একটি ধনাত্মক পূর্ণসংখ্যা।
এছাড়াও, শূন্যের ফ্যাক্টোরিয়াল \( 0! = 1 \) হিসাবে সংজ্ঞায়িত, যা ফ্যাক্টোরিয়ালের একটি বিশেষ ক্ষেত্র।
ফ্যাক্টোরিয়াল বিভিন্ন গণিত, পরিসংখ্যান, এবং সম্ভাবনার সমস্যায় ব্যাপকভাবে ব্যবহৃত হয়। বিশেষ করে বিন্যাস এবং সমাবেশ সমস্যায় ফ্যাক্টোরিয়াল ব্যবহার করে বিভিন্ন উপায়ে বস্তু বা উপাদান সাজানো বা নির্বাচনের সংখ্যা নির্ণয় করা হয়।
আরও দেখুন...